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Abstract

Experimental researchers in political science frequently face the following inference

problem: Which of several treatment arms produces the greatest return (where re-

turns may be expressed in terms of campaign donations, new supporters of a political

cause, adherents to a policy, etc.)? Multi-arm trials are typically conducted using a

static design in which fixed proportions of the subject pool are allocated to each arm.

However, a growing statistical literature suggests that adaptive experimental designs

may be far more efficient in finding the most effective treatment arm. An important

class of adaptive designs uses probability matching strategies to dynamically allocate

subjects to treatment arms. We review the underlying assumptions of the multi-arm

bandit framework and suggest that it has many potential applications in political sci-

ence. We discuss the design and analysis of original experiments using this approach

and compare their efficiency to a more traditional static design.
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Experimentation in the social sciences often boils down to a search for the intervention

that maximizes some desired outcome. What pricing strategy maximizes demand for vaccines

in low-income countries? (Cook et al. 2009) Which of the many ways of monitoring corruption

among public officials minimizes the amount missing public funds? (Olken 2007) What

combination of personal attributes makes an applicant for naturalization most attractive to

voters in the receiving country? (Hainmueller and Hangartner 2013) In many cases, this

search dovetails with other academic objectives, such as discerning the causal mechanisms

that make certain interventions especially effective (Ludwig et al. 2011).

Experiments that assess the relative effectiveness of competing interventions, be they

policies or messages, confront a fundamental problem: the list of interventions under con-

sideration is so long that it is prohibitively costly and time-consuming to test more than a

small subset. Furthermore, even if monetary costs were no object, there remains an ethical

concern that a prolonged search for the best alternative may impose excessive costs on hu-

man subjects and delay the implementation of interventions that would be superior to the

status quo.

Adaptive trails (Chin 2016; Chow and Chang 2008) represent a design-based attempt

to increase the speed and efficiency with which multi-arm trials discern the best-performing

intervention or interventions. In contrast to conventional static designs, which allocate a

fixed proportion of subjects to each arm throughout the trial, adaptive trials adjust the

allocation as the trial unfolds, investing an ever-larger share of the subject pool in more

promising treatment arms.1 Adaptive trails are most likely to pick the true winner when the

best arm is substantially better than its competitors; in such cases the design often declares

a winner with much greater confidence than would have been the case under a static design.

That said, adaptive designs are no panacea. In situations where several treatment arms

are equally effective (or nearly so), adaptive algorithms may equivocate, allocating more sub-

jects to better performing arms whose initial success was due only to sampling fluctuation.

In the end, there is no guarantee that the researcher will discover the truly best intervention

and no guarantee that the adaptive design will have allocated more subjects to the truly

best option than the static design. Given this uneasy combination of upside potential and

downside risk, the literature on adaptive designs abounds with proposals for allocating sub-

jects in ways that guard against false positives and give early warning signals about futile

searches among roughly equally effective (or ineffective) interventions.

1Adaptive trials encompass a broad class of designs that potentially evolve based on interim results. Here
we focus exclusively on the allocation of subjects, but other adaptive design adjustments include changing
the treatments or halting the trial entirely. See Chin (2016).
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The aim of this paper is to introduce political scientists to adaptive designs, highlighting

the conditions under which they do or do not outperform conventional static designs. We

begin by introducing the basic features of one commonly used adaptive design, known in

the literature as Thompson Sampling, or more generally randomized probability matching

(Thompson 1933, 1935). The features of this design are illustrated through simulation of

multi-arm trials, some of which are more favorable to adaptive designs, while others expose

their limitations. Next, we turn to empirical applications involving the wording of ballot

measures. We first present a pair of multi-arm trials. The first assembles actual ballot

measures proposing changes in the minimum wage; we conduct an adaptive trial to discern

which wording maximizes voter support. The second experiment uses the same design to

maximize voter support for right to work proposals. These two examples illustrate the

conditions under which adaptive designs work well. In the case of right to work proposals,

there is a clear winner that adaptive design identifies quickly and with a high degree of

statistical precision. Results are more ambiguous for minimum wage proposals, where several

proposals seem equally promising. We conclude by discussing another empirical example,

this one conducted in collaboration with an interest group seeking to isolate the most popular

way of wording a ballot measure, where the set of feasible alternatives includes thousands

of possibilities. We discuss strategies for conducting adaptive trials when the number of

potential interventions is large relative to the number of subjects.

Adaptive Trials

In substantive domains from advertising to biomedical research, adaptive trials are used to

speed the search for the best-performing intervention. One of the central ideas in adaptive

trial design is Thompson sampling, a heuristic approach to the task of selecting from among

multiple arms with the objective of maximizing reward. Thompson sampling randomly

allocates subjects to treatment arms according to their probability of being the “best,” i.e.,

returning highest reward. We will focus primarily on the Thompson samplings algorithm

here, although there are many alternatives, such as the Greedy algorithm, which selects the

arm with the highest empirical mean, and the upper confidence bound (UCB) algorithm,

which selects the arm with the highest upper bound on the confidence interval around its

sample mean. Allocation rules vary across performance metrics, such as statistical power,

type-I error rates, and bias, and the appropriate rule will depend on the time-horizon (Villar

et al. 2015).
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The typical tradeoff addressed in such settings is between exploration, testing arms to

gather information about them, and exploitation, selecting the most promising arm(s). Ex-

perimenters would like to gain more information about the probability of success of each arm

so that they can be confident in selecting the best arm or arms. However, over-exploring

could mean wasting draws on under-performing arms. On the other hand, too quickly

exploiting arms that perform relatively well, without having fully explored the available

options, could mean ignoring potentially superior arms. Thompson sampling provides an

intuitive manner of trading off exploration and exploitation: when the researcher does not

have much information about which arm is the best, the algorithm will facilitate exploration;

as more information is gained, the best-performing arms are increasingly exploited. Which

arm is best is calculated as a function of the payoff, or reward the experimenters get as a

consequence of selecting the arm.

While this approach is generalizable to continuous rewards, we consider the application to

binary rewards, where each observation is either a success or a failure. Here k arms have an

unknown probability of success (p1, . . . , pk), following the respective Binomial distributions.

An experimenter assigns some prior to the probability of success of each arm; in practice

this is generally taken to be U(0, 1). The posterior then follows a Beta distribution with α

equal to 1 plus the total number of successes observed for that arm, and β equal to 1 plus

the total number of failures observed from that arm. In each period, arms are randomly

selected according to their probability of being the optimal arm,2 and rewards are observed;

in the first period, all arms have equal probability of being the best, and so all arms are

sampled with equal probability. At the end of the period, the posterior is updated according

to the successes and failures in that period, the probability that each arm is the best is

re-calculated, and sampling continues in the next period.

Thompson sampling can be adapted to account for settings in which there is drift in

parameter values over time (Gupta et al. 2011), or can be contextualized based on covariate

values (Agrawal and Goyal 2013). In some applications, such as the ones considered here,

adaptive trials end after a fixed period or when a pre-determined number of subjects have

participated in the trial. In other applications, the trial stops when the best-performing

arm achieves a specified posterior probability; when used to establish statistical significance

of effects, such stopping rules can exacerbate false discovery, as the trial may stop if the

best-performing arm surpasses the target due to chance (Berman et al. 2018).

2 We estimate this value through simulation, taking a series of random draws from the posterior prob-
ability distributions of each arm, and calculating the share of the series in which each arm had the highest
draw, as implemented in the bandit package.
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Here, the objective is to maximize reward, not, as is common in the social sciences, to

estimate the difference between treatment and control. Indeed, if the “best” treatment arm

has a much higher probability of success than the control arm, the control arm will be as-

signed a relatively small sample, in which case the difference in means will generally have a

larger standard error than under balanced assignment. To improve power in such settings,

Villar et al. (2015) propose a composite design, where treatments are allocated adaptively,

but in which a set portion of patients are allocated to the control group. Additionally, Nie

et al. (2017) demonstrate that under certain common conditions, sample means from adap-

tive experiments are systematically negatively biased. Ex-post approaches to estimation to

reduce bias in such settings, such as inverse propensity score methods, can exhibit large

variance (Dimmery 2018; Nie et al. 2017). Consequently, if an unbiased estimate of treat-

ment effects is the primary objective of a study, standard static designs may be preferable.

Alternatively, procedures to reduce bias may be integrated into the design stage of adaptive

experiments. A static experiment may be conducted following, or alongside, an adaptive

experiment to produce unbiased treatment effect estimates; or Nie et al. (2017) propose

a novel randomization algorithm founded on selective inference methods, which may have

lower RMSE compared to data splitting designs with comparable sample sizes.

We consider an additional setting where arms are structured, composed of factorial com-

ponents, with each component contributing to the success rate of the arm. Combinations of

factors can quickly result in a large number of arms that may be unwieldy for exploration. In

the case of binary rewards, the reward distribution can be modeled by a probit regression on

the respective factorial components (see, e.g., Scott 2010; for more general cases, see Filippi

et al. 2010). Modeling assumptions allow us to pool information across arms sharing com-

mon components and to estimate success probabilities for arms which we have not observed.

Such model-based approaches can be used to select from among a large number of candidate

profiles. We conducted an additional confirmatory stage to serve as a run-off for the arms

with the highest predicted probability of success.

Simulations Illustrating How Adaptive Designs Work

We illustrate the method with simulations in several settings. In each case, there are nine

arms, each with some true probability of success set according to (p1, . . . , p9). In the first

period, we assume a uniform distribution over the probability of success for each of the

arms. As the probability of being the best is equal for all of the arms prior to the start of
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the experiment, each arm is sampled with equal probability in the first period. We sample

100 observations for each of 14 periods, updating each arms’ estimated probability of success

and probability of being the best after each period, and sampling in the subsequent period

accordingly. The choice of 14 periods is arbitrary but anticipates an empirical example

presented below, which runs for 14 days.

In the first case, one arm has a true 0.2 probability of success, and the remaining eight

arms have a 0.1 probability of success. Within two periods, the true best arm (presented as

a solid orange line) takes a clear lead in probability of being the best, shown in the left facet

of Figure 1. By the end of the 14-period experiment, the true best arm is assigned nearly

90% probability of being the best. In the right facet we plot potential value remaining, or

per-play regret, a measure of how much success rates might be improved by switching to

another arm (Scott 2015). By the end of the experiment, we predict that we could improve

success rate over the arm ranked as being the best by as much as 9%. Since the amount

of improvement that could be expected to be achieved with additional experimentation is

relatively small, the experimenter may satisfice with this outcome.

In the second case, the best arm has only a 0.12 true probability of success, compared

to a 0.1 probability of success for the remaining 8 arms. The 14 period experiment does not

allow enough time to come to a clear conclusion about which arm is the best. Indeed, in

our illustrative example we assign the best arm (again in solid orange) only 9.3% probability

of being the best, whereas we assign an inferior arm 30% probability of being the best,

shown in the left facet of Figure 2. Value remaining is also relatively high; by the end of the

experiment, we predict that we could improve success rate over the arm ranked as being the

best by as much as 82%.

Finally, we consider a case where the best arm has a 0.2 true probability of success, a

second-best arm has a 0.18 probability of success, and remaining arms have 0.1 probability

of success. The second best arm (in dotted green) quickly takes a lead, but by the end of

the experiment we assign the true best arm a 50% probability of being the best, shown in

the left facet of Figure 3. In such cases, the true best arm may end up assigned the highest

probability of being the best, but when an arm underperforms by chance, the consequent

low sampling probability means that our estimates of the arm’s success might not recover.

While we pick the correct arm in this case, the moderate potential value remaining at the

end of the experiment indicates that an alternative arm may could surpass the success rate

of the winning arm by as much as 29%.

To compare the performance of adaptive trials in the three scenarios more rigorously, we
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Figure 1: Case 1, clear winner
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Figure 2: Case 2, no clear winner
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Figure 3: Case 3, competing winner
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plot the distributions of predicted probability of being the best for the true best arm across

5,000 simulations in Figure 4. In the first scenario, by the end of the experiment we assign

84.2% probability to the true best arm on average, and pick the true best arm in 98.9% of

trials. In the second case, we only assign 21.4% probability to the true best arm, and select

it in only 34.5% of trials. In the third case, we assign the true best arm 60.4% probability of

being the best, and select it in 75.9% of trials. The bottom line seems to be that adaptive

trials work well when there is a clear winner to be found or when a small subset of treatment

arms stand above the rest.

Figure 4: Distribution of probabilities of being the best for true best arm
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Study 1: Two Multi-arm Adaptive Trials

We recruited 1100 subjects from Amazon’s Mechanical Turk (MTurk) to participate in Study

1. Convenience samples obtained on Mechanical Turk are far from representative of the

national population, but do provide a fertile testing ground for experimental studies. Recent

studies have revealed a close correspondence of experimental estimates obtained on MTurk

and probability samples (Mullinix et al. 2015; Coppock 2017; Coppock et al. 2018). Our

study ran from June 21st, 2018 to June 30th, 2018. We paid respondents $1.00 each for

their participation.

Design

After answering a series of demographic questions, all subjects rated two ballot measures,

one on the minimum wage and the second on right to work. We adapted the wording of these

measures from real proposals, making only small wording changes to facilitate consistency

of measurement across arms. We implemented a composite design parallel to the controlled

Gittins approach recommended by Villar et al. (2015); for each type of ballot measure 90%

of treatments were assigned according to Thompson Sampling, and 10% were assigned under

simple random assignment, with equal probability for each treatment.

The minimum wage treatments were drawn from ballot measures proposed in Colorado,

Florida, Illinois, Nevada, and New Jersey. We generated two versions of each of these five

proposals, varying whether the current value of the minimum wage was displayed.3 The

right to work treatments were adapted from ballot measures in Missouri, North Dakota,

Oklahoma, and South Dakota. For each of these, we created versions that did or did not

describe the ballot measure as a “constitutional amendment.” For both rating tasks, the

outcome question was asked, “If this measure were on the ballot in your state, would you

vote in favor or against?” The full text of all treatments is presented in Table 1.

Results

We present two sets of results. The first, presented in Figure 5, is the over time development

of the posterior probability that each arm is the best. The second, presented in Figure 6,

is a straightforward comparison of the average approval of each proposal. A key feature of

3We obtained the current minimum wage rate from https://en.wikipedia.org/wiki/Minimum_wage_

in_the_United_States. These rates are included in the online appendix. For states that do not have a
minimum wage, we imputed the federal minimum wage value.
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Table 1: Treatments and Outcome Measures

Minimum Wage Right to Work

Question Text Imagine that the following ballot measure were up
for a vote in your state. The measure would: [ballot
measure text]. If this measure were on the ballot in
your state, would you vote in favor or against? [I
would vote in favor of this measure; I would vote
against this measure]

Imagine that the following ballot measure were up
for a vote in your state. The measure would [amend
the State Constitution to]: [ballot measure
text]. If this measure were on the ballot in your
state, would you vote in favor or against? [I would
vote in favor of this measure; I would vote against
this measure]

Proposal 1 increase the minimum wage [from {current}] to
{current + 1} per hour, adjusted annually for
inflation, and provide that no more than $3.02 per
hour in tip income may be used to offset the
minimum wage of employees who regularly receive
tips.

prohibit, as a condition of employment, forced
membership in a labor organization (union) or forced
payments of dues or fees, in full or pro-rata
(”fair-share”), to a union. The measure will also
make any activity which violates employees’ rights
provided by the bill illegal and ineffective and allow
legal remedies for anyone injured as a result of
another person violating or threatening to violate
those employees’ rights. The measure will not apply
to union agreements entered into before the effective
date of the measure, unless those agreements are
amended or renewed after the effective date of the
measure.

Proposal 2 raise the minimum wage [from {current}] to
{current + 1} per hour effective September 30th,
2021. Each September 30th thereafter, minimum
wage shall increase by $1.00 per hour until the
minimum wage reaches {current + 5} per hour on
September 30th, 2026. From that point forward,
future minimum wage increases shall revert to being
adjusted annually for inflation starting September
30th, 2027.

The right of persons to work may not be denied or
abridged on account of membership or
nonmembership in any labor union or labor
organization, and all contracts in negation or
abrogation of such rights are hereby declared to be
invalid, void, and unenforceable.

Proposal 3 Shall the minimum wage for adults over the age of 18
be raised [from {current}] to {current + 1} per
hour by January 1, 2019?

ban any new employment contract that requires
employee to resign from or belong to a union, pay
union dues, or make other payment to a union.
Required contributions to charity or other third
party instead of payments to union are also banned.
Employees must authorize payroll deduction to
unions. Violations of the section is a misdemeanor.

Proposal 4 raise the minimum wage [from {current}] to
{current + 1} per hour worked if the employer
provides health benefits, or {current + 2} per hour
worked if the employer does not provide health
benefits.

No person shall be deprived of life, liberty or
property without due process of law. The right of
persons to work shall not be denied or abridged on
account of membership or nonmembership in any
labor union, or labor organization.

Proposal 5 raise the State minimum wage rate [from
{current}] to at least {current + 1} per hour, and
require annual increases in that rate if there are
annual increases in the cost of living.

Boldface text indicates randomly varied elements.
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adaptive designs is that the probability of assignment to each condition varies over time. A

default analytic approach when the probabilities of assignment are different for different units

is to weight each observation by the inverse of the probability of assignment to the condition

that it is in (see Gerber and Green (2012, chp. 4) for a textbook introduction to inverse

probability weighting, or IPW). In this case, because we do not incorporate the changing

probabilities of assignment into the procedure for estimating the probability that each arm

is the best, we also present unweighted group averages. The resulting group averages are

unbiased under the assumption that the potential outcomes of subjects are equivalent (in

expectation) for each day of the experiment. For completeness, we also present group means

that use IPW in the appendix. Because of the extreme weights, the ranking of the treatments

is mildly different when we use IPW.

Figure 5: Study 1: Overtime Posterior Probabilities
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footnote 2. “A” versions of the minimum wage proposals include the current minimum wage and “B”
versions do not. “CA” versions of the right to work proposals are describes as “constitutional amendments”
and “BM” versions are not.

The minimum wage study yielded no clear winner. The winning arm, by a hair, was
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Figure 6: Study 1: Group Means
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Proposal 3 (B, without current minimum wage), with a posterior probability of being the

best of 20.8% and a raw success rate of 85.8% over 183 trials. This arm was closely followed

by Proposal 5 (A, with current minimum wage), Proposal 4 (A, with current minimum

wage), and Proposal 3 (A, with current minimum wage). Out of 10 arms, only two had raw

success rates under 80%; with similarly high probabilities of success across several arms, the

best arm was not easily distinguishable.

By contrast, the right to work experiment immediately produced a standout arm that

proved to be very successful throughout the study. Proposal 4 (framed as a ballot measure)

ended with an 82.7% posterior probability of being the best arm, with a raw success rate of

92.0% over 183 trials. The second-best arm was also Proposal 4 (framed as a constitutional

amendment) with a posterior probability of being the best of 9.2% and a raw success rate

of 87.8% over 82 trials. This example underlines that even a small (4.2 percentage point)

difference in success rates can translate into a very large (82.8 percentage point) difference

in the probability of being the best arm.

We can use these results to inform guesses about how our experiment would have fared if

we had used a standard static design instead of the adaptive design. The static design would

have sampled each of the 10 arms in the minimum wage experiment 100 times each, and

each of the 8 arms in the right to work experiment 125 times each. We conduct simulations

in which we use our estimated success rates as the truth. In simulations of the minimum

wage experiment, we picked the winning Proposal 3 (B) 25% of the time, and, on average,

assigned this arm a posterior probability of being the best of 21%. Conversely, for the right to

work experiment, we picked the winning Proposal 4 (BM) 83% of the time, and, on average,

assigned this arm a posterior probability of being the best of 74%.

Considering Figure 6, we note that a feature of the adaptive design is that the proposals

with the highest raw success rates also have the tightest standard errors, as these arms tend

to receive more samples than arms with lower success rates. This is appropriate when the

performance of the best arm is considered a priority by the researcher and success rates of

poorly-performing arms is not of particular interest. Under a static design, our certainty

regarding the best arm would also have been much less exact. For the minimum wage

experiment, our standard errors around our estimate of probability of success for the best

arm in a static design would have been 135% as large as they were under our realization

of the adaptive design, assuming the realized success rate is truth. For the right to work

experiment, standard errors on the probability of success of the best arm would have been

240% as large as our realization. The adaptive design appears to offer clear advantages in
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terms of the precision with which the best performing arm’s success rate is evaluated.

Study 2: An Adaptive Conjoint Trial

Study 2 extends the adaptive design beyond the multi-arm design (as in Study 1) to fac-

torial designs, often referred to a conjoint experiments.4 Like any factorial design, conjoint

designs enable the study of multiple dimensions of preference within the same experiment.

However, even a moderately complex conjoint experiment with, for example, five attributes

with four levels each would produce 45 = 1024 possible treatment configurations. Even with

an adaptive design, discovering the best arm among such a vast number of possibilities by

brute force would be prohibitively expensive.

Our solution is to take advantage of the factorial design to put structure on the problem.

As a first approximation, we generate an additive model of being the best arm. The model

is additive in the sense our prediction of the probability of each arm being the best is the

sum of the Average Marginal Component Effects (AMCEs) of each component in the profile.

We used these probabilities in order to perform our adaptations. We modeled probability of

success as a probit regression on the components, using the R package MCMCpack, assigning

an improper uniform prior to the coefficients.

Design

For study 2, we recruited approximately 4,000 subjects over 14 days on Lucid, a marketplace

for online survey respondents. Like Mechanical Turk, Lucid provides respondents who are

not representative of the national population, although demographic diversity is greater on

Lucid than on MTurk (Coppock and McClellan 2018).

Subjects rated two ballot proposals each. Unlike Study 1, these ballot proposals were

created in collaboration with [redacted], an organization promoting a ballot measure on the

subject of [redacted], in the state of [redacted]. Each proposal consisted of a title, and four

bullet points. Proposals were assigned four out of eight potential content factors, with each

bullet point consisting of one level of an assigned factor. Table 2 lists number of levels in

each factor. The total number of possible ballot measures is 3,388. Because the results of

4Conjoint experiments were introduced to political science by Hainmueller et al. (2014). For an appli-
cation of the conjoint design to the study of candidate partisanship on preferences over mayoral candidate
attributes, see Kirkland and Coppock (2018).
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this study may inform choices by our partner organization in advance of the 2018 elections,

we omit the content of this study for the present time.

Table 2: Factor composition

Factor Arms
Title 2 levels
Factor 1 2 levels
Factor 2 2 levels
Factor 3 3 levels
Factor 4 1 level
Factor 5 2 levels
Factor 6 9 levels
Factor 7 1 level
Factor 8 1 level

Results

We present three sets of results.

First, we trace the development of the 50 arms that had the highest posterior probability

of being the best after the 11th day, by which point 2,961 subjects had rated 5,922 profiles.

Figure 7 shows progression of predicted probability of being the best over these 11 days.

Posterior probabilities evolved considerably from the start of the trial, when every arm had

the same 0.03% probability of begin best. Nevertheless, no arm exceeded a 5% chance of

being the best arm after day 11.

Second, we analyze our experiment as in a traditional conjoint. Figure 8 shows the

estimated AMCEs, calculated via OLS with standard errors clustered by subject. 5 Because

we cannot share the details of what each factor refers to, Figure 8 serves only to demonstrate

the feasibility of analyzing data from an adaptive conjoint in the standard way.

Finally, we validated our model by running a static “bake-off” trial among eight arms

that were predicted to have a high probability of success. We conducted this eight-arm trial

among 971 subjects also drawn from Lucid, who rated 1,942 profiles over the remaining days

5In the first round of the experiment, treatment was allocated across all arms under uniform random
assignment. Due to the large number of possible factor combinations and chance assignment, the single
level in factor 8 was collinear with other combinations of factors, and so effects were not estimated for this
factor. Subsequently, profiles with factor 8 were assigned with very low probability, and so we are not able to
estimate effects for this factor. Issues of potential collinearity could be addressed with a fractional factorial
design or otherwise enforced balance across factors in randomization in the first period. We present effect
estimates here for levels excluding factor 8.
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Figure 7: Top 50 finishing arms in adaptive conjoint, over time
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Figure 8: Average Marginal Component Effects
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in the experiment. The eight arms were selected by picking the top two arms according to

four separate analytic strategies:

1. A probit regression of the outcome on the levels of each factor with no interactions (a

“main effects” model).

2. A probit regression of the outcome on each factor plus all two-way interactions of the

factors.

3. An elastic net model with all factors and their two-way interactions6

4. A Bayesian Additive Regression Trees (BART) model (Chipman et al. 2010; Hill 2011;

Green and Kern 2012) that flexibly accommodates interactions of any order among all

factors.

Figure 9 shows the results of this additional study. Perhaps surprisingly, the least com-

plex model (main effects probit) was by far the most effective in choosing the winner of the

bake-off. Interacted probit performed the worst, with the two models that allow for some

regularization (elastic nets and BART) performing somewhere in the middle. Substantively,

this pattern of results implies that when evaluating this ballot measure, respondents con-

sidered each of the elements in isolation and their overall evaluation was approximately the

sum of their element-by-element evaluations.

Discussion

The growth and development of experimentation in the social sciences has led to increasing

sophistication in the design of multi-arm trials. Although the adaptive allocation of subjects

to treatment arms over time adds complexity to a trial’s implementation and analysis, the

payoff may be considerable. When one arm is truly superior to the others, an adaptive

trial can locate the winning arm more reliably than a static design. Moreover, because the

adaptive trial allocates more sample to the winning arm, the experimenter learns more about

the attributes of the winner at the conclusion of the study. Our simulations and the empirical

example of right to work ballot measures illustrate just how valuable adaptive designs can

be in the context of a truly superior arm. The level of public support for the winning right

6We implement k-fold cross-validation under the R glmnet package, with α = 0.5, using λ that gives
minimum cross-validated error.

18



Figure 9: 8-arm bake-off
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to work ballot measure was estimated with a standard error that was 42% as large as would

have been the case under a static design.

The adaptive allocation of subjects, however, is of little value when no treatment arm

truly stands above the others. In such cases, adaptive allocation follows clues that are the

product of sampling variability rather than the true superiority of an arm. As the minimum

wage application suggests, at best an adaptive design winnows out some inferior arms and

reallocates the sample to obtain a somewhat more precise assessment of the winning arm’s

payoff. In this application, an adaptive design still outperformed the expected outcome from

a static design in terms of the precision with which the winning arm’s payoff was estimated,

but the gains were far less dramatic than the right to work application. Researchers con-

sidering the use of adaptive sample allocation should therefore reflect on their prior beliefs

about the effectiveness of the treatment arms they plan to investigate. The more variable

the effects, the more valuable an adaptive design is likely to be.

This point also holds for studies in which the aim is to compare treatment arms to an

untreated control group. Consider a hybrid design in which a static allocation is made to

an untreated control group throughout the trial, but sample is allocated adaptively to the

treatment arms. The adaptive component of the design aims to locate the best performing

treatment arm, but the static component ensures that the control group always receives

ample subjects regardless of how it performs over the trial. When one treatment arm is

truly superior, this design will allocate substantially more subjects to it and will therefore

render a more precise estimate of the treatment effect vis-à-vis the control group. On the

other hand, the gains may be negligible if the treatment arms are in fact similarly effective.

An important research frontier is the efficient allocation of sample in the context of

factorial designs. To our knowledge, ours is the first paper to consider adaptive design in the

context of conjoint experiments in the social sciences, where the research aim is to find the

combination of traits with the highest payoff. Because the number of possible treatment arms

is large relative to the number of subjects, adaptive design alone may be unable to isolate

the best treatment combination with high probability over a fixed data collection schedule.

In this case, adaptive design requires the assistance of modeling assumptions to reduce the

set of promising treatment combinations. In our application, we addressed this challenge

by way of a two-part tournament: an initial phase in which adaptive allocation sought to

identify effective treatments and a bake-off phase in which the two finalists proposed by

each of four statistical models competed in a further adaptive trial. This procedure is by

no means the only way to conduct a tournament of this kind, but it remains noteworthy
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that in this application a nominee proposed by a relatively simple additive model easily

outdistanced its competitors. Further empirical tests are needed in order to assess whether

additive models perform well in other substantive domains and whether the performance of

more sophisticated models could be improved by restructuring the initial search phase to

more reliably explore interactions among factors.

21



References

Agrawal, Shipra and Navin Goyal. 2013. Thompson sampling for contextual bandits with linear payoffs. In
International Conference on Machine Learning. pp. 127–135.

Berman, Ron, Leonid Pekelis, Aisling Scott and Christophe Van den Bulte. 2018. “p-Hacking and False
Discovery in A/B Testing.”.

Chin, Richard. 2016. Adaptive and flexible clinical trials. CRC Press.

Chipman, Hugh A., Edward I. George and Robert E. McCulloch. 2010. “BART: Bayesian Additive Regression
Trees.” Annals of Applied Statistics 4(1):266–298.

Chow, Shein-Chung and Mark Chang. 2008. “Adaptive design methods in clinical trials–a review.” Orphanet
journal of rare diseases 3(1):11.
URL: http://doi.org/10.1186/1750-1172-3-11

Cook, Joseph, Marc Jeuland, Brian Maskery, Donald Lauria, Dipika Sur, John Clemens and Dale Whitting-
ton. 2009. “Using private demand studies to calculate socially optimal vaccine subsidies in developing
countries.” Journal of Policy Analysis and Management: The Journal of the Association for Public Policy
Analysis and Management 28(1):6–28.

Coppock, Alexander. 2017. “Generalizing from Survey Experiments Conducted on Mechanical Turk: A
Replication Approach.” Political Science Research and Methods . Forthcoming.

Coppock, Alexander and Oliver A. McClellan. 2018. “Validating the Demographic, Political, Psychological,
and Experimental Results Obtained from a New Source of Online Survey Respondents.” Unpublished
manuscript .

Coppock, Alexander, Thomas J. Leeper and Kevin J. Mullinix. 2018. “The Generalizability of Heterogeneous
Treatment Effect Estimates Across Samples.” Unpublished manuscript.

Dimmery, Drew. 2018. “Adaptive Experimental Design for Social Science.” Manuscript in preparation.
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A Minimum Wage Rates
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Table A.3: Minimum Wage rates as of June, 2018

State Minimum Wage

Alabama $7.25
Alaska $9.84
Arizona $10.50
Arkansas $8.50
California $11.00
Colorado $10.20
Connecticut $10.10
Delaware $8.25
Florida $8.25
Georgia $7.25
Hawaii $10.10
Idaho $7.25
Illinois $8.25
Indiana $7.25
Iowa $7.25
Kansas $7.25
Kentucky $7.25
Louisiana $7.25
Maine $10.00
Maryland $9.25
Massachusetts $11.00
Michigan $9.25
Minnesota $9.65
Mississippi $7.25
Missouri $7.85
Montana $8.30
Nebraska $9.00
Nevada $8.25
New Hampshire $7.25
New Jersey $8.60
New Mexico $7.50
New York $10.40
North Carolina $7.25
North Dakota $7.25
Ohio $8.30
Oklahoma $7.25
Oregon $10.25
Pennsylvania $7.25
Rhode Island $10.10
South Carolina $7.25
South Dakota $8.85
Tennessee $7.25
Texas $7.25
Utah $7.25
Vermont $10.50
Virginia $7.25
Washington $11.50
West Virginia $8.75
Wisconsin $7.25
Wyoming $7.25

Source: https://en.wikipedia.org/wiki/Minimum_wage_in_the_United_States
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B Additional Analyses

Figure B.10: Study 1: Group Means (IPW)
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Table B.4: Adaptive conjoint MCMC probit model

Factors

Title 0 −0.684
(0.296)

Title 1 0.009
(0.033)

Factor1.Level1 −0.021
(0.114)

Factor1.Level2 0.105
(0.088)

Factor2.Level1 0.281
(0.088)

Factor2.Level2 0.240
(0.092)

Factor3.Level1 0.160
(0.084)

Factor3.Level2 0.160
(0.085)

Factor3.Level3 0.085
(0.095)

Factor4.Level1 0.216
(0.081)

Factor5.Level1 0.145
(0.082)

Factor5.Level2 0.112
(0.086)

Factor6.Level1 0.122
(0.101)

Factor6.Level2 0.192
(0.091)

Factor6.Level3 0.067
(0.113)

Factor6.Level4 0.107
(0.100)

Factor6.Level5 0.151
(0.089)

Factor6.Level6 0.106
(0.111)

Factor6.Level7 0.088
(0.115)

Factor6.Level8 −0.132
(0.162)

Factor6.Level9 0.179
(0.100)

Factor7.Level1 0.121
(0.086)
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