The Quant. Interwebs have overflowed with joy since the election. Poll aggregation works. And so indeed does polling, though you won’t hear as much about it on the news, which is likely biased towards celebrity intellects than the hardworking many. But why were the polls so accurate?
One potential explanation: because they do some things badly. For instance, most fail at collecting “random samples” these days, because of a fair bit of nonresponse bias. This nonresponse bias, if correlated with the propensity to vote, may actually push up the accuracy of the vote choice means. There are a few ways to check this theory.
One way to check this hypothesis: were the results from polls using Likely Voter screens different from those not using them? If not, why not? From the Political Science literature, we know that people who vote (not just those who say they vote) do vary a bit from those who do not vote, even on things like vote choice. For instance, there is just a larger proportion of `independents’ among them.
Other kinds of evidence will be in the form of failure to match population or other benchmarks. For instance, election polls would likely fare poorly when predicting how many people voted in each state. Or tallying up Spanish language households or number of registered. Another way of saying this is that the bias will vary by what parameter we aggregate from these polling data.
So let me reframe the question: how do polls get election numbers right even when they undercount Spanish speakers? One explanation is that there is a positive correlation between selection into polling, and propensity to vote, which makes vote choice means much more reflective of what we will see come election day.
The other possible explanation to all this – post-stratification or other posthoc adjustment to numbers, or innovations in how sampling is done: matching, stratification etc. Doing so uses additional knowledge about the population and can shrink s.e.s and improve accuracy. One way to test such non-randomness: over tight confidence bounds. Many polls tend to do wonderfully on multiple uncorrelated variables, for instance, census region proportions, gender, … etc., something random samples cannot regularly produce.