Differential measurement error across control and treatment groups or in a within-subjects experiment, pre- and post-treatment measurement waves, can vitiate estimates of treatment effect. One reason for differential measurement error in surveys is differential motivation. For instance, if participants in the control group (pre-treatment survey) are less motivated to respond accurately than participants in the treatment group (post-treatment survey), the difference in means estimator will be a biased estimator of the treatment effect. For example, in Deliberative Polls, participants acquiesce more during the pre-treatment survey than the post-treatment survey (Weiksner, 2008). To correct for it, one may want to replace agree/disagree responses with construct specific questions (Weiksner, 2008). Perhaps a better solution would be to incentivize all (or a random subset of) responses to the pre-treatment survey. Possible incentives include – monetary rewards, adding a preface to the screens telling people how important accurate responses are to research, etc. This is the same strategy that I advocate for dealing with satisficing more generally (see here) – which translates to minimizing errors, than the more common, more suboptimal strategy of “balancing errors” by randomizing the response order.
Correcting for Differential Measurement Error in Experiments
14
Feb