The mortality rate is puzzling to mortals. A better number is the expected number of years lost. (A yet better number would be quality-adjusted years lost.) To make it easier to calculate the expected years lost, Suriyan and I developed a Python package that uses the SSA actuarial data and life table to estimate the expected years lost.

We illustrate the use of the package by estimating the average number of years by which people’s lives are shortened due to coronavirus. Using data from Table 1 of the paper that gives us the distribution of ages of people who died from COVID-19 in China, with conservative assumptions (assuming the gender of the dead person to be male, taking the middle of age ranges) we find that people’s lives are shortened by about 11 years on average. These estimates are conservative for one additional reason: there is likely an inverse correlation between people who die and their expected longevity. And note that given a bulk of the deaths are among older people, when people are more infirm, the quality-adjusted years lost is likely yet more modest. Given that the last life tables from China are from 1981 and given life expectancy in China has risen substantially since then (though most gains come from reductions in childhood mortality, etc.), we exploit the recent data from the US, assuming as-if people have the same life tables as Americans. Using the most recent SSA data, we find that the number to be 16. Compare this to deaths from road accidents, the modal reason for death among 5-24, and 25-44 ages in the US. Assuming everyone who dies from a traffic accident is a man, and assuming the age of death to be 25, we get ~52 years, roughly 3x as large as coronavirus.