Broadly, Google Ads works as follows: 1. Advertisers create an ad, choose keywords, and make a bid (on cost-per-click or CPC) (You can bid on cost-per-view and cost-per-impression also, but we limit our discussion to CPC.), 2. the Google Ads account team vets whether the keywords are related to the product being advertised, and 3. people see the ad from the winning bid when they search for a term that includes the keyword or when they browse content that is related to the keyword (some Google Ads are shown on sites that use Google AdSense).
There is a further nuance to the last step. Generally, on popular keywords, Google has thousands of candidate ads to choose from. And Google doesn’t simply choose the ad from the winning bid. Instead, it uses data to choose an ad (or a few ads) that yield the most profit (Click Through Rate (CTR)*bid). (Google probably has a more complex user utility function and doesn’t show ads below a low predicted CTR*bid
.) In all, who Google shows ads to depends on the predicted CTR and the money it will make per click.
Given this setup, we can reason about the audience for an ad. First, the higher the bid, the broader the audience. Second, it is not clear how well Google can predict CTR per ad conditional on keyword bid especially when the ad run is small. And if that is so, we expect Google to show the ad with the highest bid to a random subset of people searching for the keyword or browsing content related to the keyword. Under such conditions, you can use the total number of impressions per demographic group as an indicator of interest in the keyword. For instance, if you make the highest bid on the keyword ‘election’ and you find that total number of impressions that your ad makes among people 65+ are 10x more than people between ages 18-24, under some assumptions, e.g., similar use of ad blockers, similar rates of clicking ads conditional on relevance (which would become same as predicted relevance), similar utility functions (that is younger people are not more sensitive to irritation from irrelevant ads than older people), etc., you can infer relative interest of 18-24 versus 65+ in elections.
The other case where you can infer relative interest in a keyword (topic) from impressions is when ad markets are thin. For common keywords like ‘elections,’ Google generally has thousands of candidate ads for national campaigns. But if you only want to show your ad in a small geographic area or an infrequently searched term, the candidate set can be pretty small. If your ad is the only one, then your ad will be shown wherever it exceeds some minimum threshold of predicted CTR*bid. Assuming a high enough bid, you can take the total number of impressions of an ad as a proxy for total searches for the term and how often people browsed related content.
With all of this in mind, I discuss results from a Google Ads campaign. More here.