# Interacting With Human Decisions

29 Jun

In sport, as in life, luck plays a role. For instance, in cricket, there is a toss at the start of the game. And the team that wins the toss wins the game 3% more often. The estimate of the advantage from winning the toss, however, is likely an underestimate of the maximum potential benefit of winning the toss. The team that wins the toss gets to decide whether to bat or bowl first. And 3% reflects the maximum benefit only when the team that won the toss chooses optimally.

The same point applies to estimates of heterogeneity. Say that you estimate how the probability of winning varies by the decision to bowl or bat first after winning the toss. (The decision to bowl or bat first is made before the toss.) And say, 75% of the time team that wins the toss chooses to bat first and wins these games 55% of the time. 25% of the time, teams decide to bowl first and win about 47% of these games. Winning rates of 55% and 47% would be likely yet higher if the teams chose optimally.

In the absence of other data, heterogeneous treatment effects give clear guidance on where the payoffs are higher. For instance, if you find that showing an ad on Chrome has a larger treatment effect, barring other information (and concerns), you may want to only show ads to people who use Chrome to increase the treatment effect. But the decision to bowl or bat first is not a traditional “covariate.” It is a dummy that captures the human judgment about pre-match observables. The interpretation of the interaction term thus needs care. For instance, in the example above, the winning percentage of 47% for teams that decide to bowl first looks ‘wrong’—how can the team that wins the toss lose more often than win in some cases? Easy. It can happen because the team decides to bowl in cases where the probability of winning is lower than 47%. Or it can be that the team is making a bad decision when opting to bowl first.